首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   989篇
  免费   141篇
  国内免费   396篇
安全科学   209篇
废物处理   14篇
环保管理   147篇
综合类   688篇
基础理论   200篇
污染及防治   106篇
评价与监测   61篇
社会与环境   58篇
灾害及防治   43篇
  2024年   4篇
  2023年   38篇
  2022年   63篇
  2021年   57篇
  2020年   60篇
  2019年   63篇
  2018年   43篇
  2017年   45篇
  2016年   65篇
  2015年   86篇
  2014年   69篇
  2013年   102篇
  2012年   100篇
  2011年   86篇
  2010年   77篇
  2009年   67篇
  2008年   50篇
  2007年   66篇
  2006年   52篇
  2005年   50篇
  2004年   42篇
  2003年   34篇
  2002年   34篇
  2001年   17篇
  2000年   16篇
  1999年   22篇
  1998年   19篇
  1997年   16篇
  1996年   6篇
  1995年   8篇
  1994年   14篇
  1993年   12篇
  1992年   6篇
  1991年   3篇
  1990年   7篇
  1988年   2篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1969年   1篇
排序方式: 共有1526条查询结果,搜索用时 953 毫秒
1.
The sensitivity of the United States Forest Health Monitoring network to outbreaks of defoliating insects was examined by means of a simulation study. A model constructed specifically for the study was used to generate a wide variety of defoliation patterns in forested landscapes. Forest configuration was that of Minnesota, USA, as expressed by the GAP land cover classification. Combinations of model parameters were based on a Latin Hypercube sample. The relationship between the average number of plots defoliated and outbreak characteristics was then examined via multiple regression. Both theoretical and model results pointed to a strong, linear relationship between the average number of plots defoliated and outbreak size. Model results provided additional insight, suggesting a significant relationship between the average number of plots defoliated and other outbreak characteristics after outbreak size was taken into account.  相似文献   
2.
Effluent from dyeing and finishing processes is an important source of water pollution. The effectiveness of bentonite, kaolinite and sediment from a local deposit in removing methylene blue as a cationic dye from aqueous solutions has been investigated. The adsorption equilibrium (isotherm) has been determined according to Freundlich and Langmuir equations. The optimum amount is 0.5 g for all adsorbents, and the optimum pH ranges are 2-8 for bentonite and 2-6 for kaolinite and sediment. With respect to kinetic modelling, the adsorption of methylene blue on various adsorbents was fitted to a second-order equation. Also, the thermodynamic parameters were determined. The negative free energy values indicate the feasibility of the process and spontaneous nature of adsorption. The positive ΔH° values indicate the endothermic nature of the process. Thus, Egyptian clay minerals and sediments have a great tendency to remove the dye from solutions.  相似文献   
3.
On-going population growth and resulting domestic demand for water require rapid and effective decision-making as regards groundwater management and control of the various sources of salinization and pollution in Coastal aquifers. Sustainability of water resources for utilization by future generations must therefore be a high priority, not only for the purpose of fulfilling needs for water usage but also for bringing people into harmony with their ambient natural environment.The objective of this paper is to propose an empirical approach for prioritization of the needs involved for sustainable aquifer management. The approach involves a schematic format to:(1) develop a global understanding of an aquifer's hydrological and environmental properties in order to delineate appropriate eco-hydrological scenarios and recommend corresponding operational management activities; and(2) emphasize the importance of educating and increasing the awareness of the population involved as to the need for and viability of socially acceptable measures for sustainable management of groundwater and other resources.The psychologist Abraham Maslow utilized a pyramid to illustrate that until people's most basic needs were fulfilled, higher levels of needs would remain irrelevant. This paper postulates a comparable pyramid prioritizing hydrological needs required for progressing towards sustainable groundwater resources. Two sub-regions of Israel's Coastal aquifer in the Sharon region have been presented as representative areas, each characterized by different stress of exploitation. In assessing these sub-regions situation, specific measures have been recommended for achieving and/or maintaining sustainable groundwater resources in light of the ambient environment, and the level of the population on the pyramidal hierarchy of groundwater needs.  相似文献   
4.
Ground-level ozone (O3) has become a critical pollutant impeding air quality improvement in Yangtze River Delta region of China. In this study, we present O3 pollution characteristics based on one-year online measurements during 2016 at an urban site in Nanjing, Jiangsu Province. Then, the sensitivity of O3 to its precursors during 2 O3 pollution episodes in August was analyzed using a box model based on observation (OBM). The relative incremental reactivity (RIR) of hydrocarbons was larger than other precursors, suggesting that hydrocarbons played the dominant role in O3 formation. The RIR values for NOX ranged from –0.41%/% to 0.19%/%. The O3 sensitivity was also analyzed based on relationship of simulated O3 production rates with reductions of VOC and NOX derived from scenario analyses. Simulation results illustrate that O3 formation was between VOCs-limited and transition regime. Xylenes and light alkenes were found to be key species in O3 formation according to RIR values, and their sources were determined using the Positive Matrix Factorization (PMF) model. Paints and solvent use was the largest contributor to xylenes (54%), while petrochemical industry was the most important source to propene (82%). Discussions on VOCs and NOX reduction schemes suggest that the 5% O3 control goal can be achieved by reducing VOCs by 20%. To obtain 10% O3 control goal, VOCs need to be reduced by 30% with VOCs/NOX larger than 3:1.  相似文献   
5.
德州市夏季臭氧敏感性特征及减排方案   总被引:9,自引:9,他引:0  
严茹莎 《环境科学》2020,41(9):3961-3968
近年来德州市臭氧污染频发,2018年夏季(6~8月),德州市发生了严重臭氧污染事件,臭氧日最大8 h浓度值超标天数达60 d,超标率65%,3个月平均值为176 μg ·m-3,最高达262 μg ·m-3.本研究利用WRF-CAMx耦合的HDDM模块,分析期间德州臭氧敏感性特征及减排方案.结果表明,在空间上,德州市中心城区为VOCs控制区,而郊区为NOx与VOCs协同控制区.在时间上,VOCs敏感值每日为正值,但dO3_V50在6月(城区18.7 μg ·m-3,郊区19.7 μg ·m-3)和8月(城区15.3 μg ·m-3,郊区16.4 μg ·m-3)高于7月(城区13.0 μg ·m-3,郊区11.8 μg ·m-3),NOx敏感值城区呈正负交错,郊区大部分为正值,并与VOCs敏感值接近.对于城区减排方案应考虑以仅VOCs削减为优先,而郊区由于NOx和VOCs对臭氧减排效果相当,建议以NOx:VOCs=1:1为优.  相似文献   
6.
祁连山七一冰川物质平衡的时空变化特征   总被引:1,自引:1,他引:0  
基于2011-2016年七一冰川的野外观测资料,结合气象站数据及1975-2015年的遥感影像,分析了冰川末端变化、物质平衡时空变化特征及其对气候变化的敏感性,结果表明:1975年以来,七一冰川末端持续退缩235 m,平均退缩速率为5.9 m/a,冰川面积减少0.13 km2(4.5%)。2011-2016年,七一冰川的平均物质平衡为-476 mm w.e.,平均ELA为4941 m a.s.l.,物质平衡梯度为2.9 mm/m。从季节变化看,受风吹雪和冰面升华影响,11月至次年3月冰川呈负平衡;4月和9月物质平衡受降水控制,随海拔变化呈现降水效应;强消融期(6-8月)物质平衡随海拔升高线性增加;消融期末由9月初延后至9月底。敏感性分析结果表明,物质平衡对气温变化的敏感性为-178.7 mm w.e. °C-1 a-1,对降水变化的敏感性为+2.93 mm w.e. mm-1 a-1。即61 mm的降水增加才能弥补暖季气温升高1 °C引起的冰川净物质损失。  相似文献   
7.
杭州湾北岸上海段石化集中区臭氧重污染过程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州湾O3污染的形成机制,采用在线监测系统对杭州湾北岸上海段石化集中区O3及其前体物开展了为期1个月(2019年5月)的同步连续观测.采用OZIPR(臭氧等值线研究)模型分析O3生成的敏感性.在O3重度污染期间,利用PMF(正定矩阵因子分解)模型对O3前体物——VOCs进行源解析,采用臭氧生成潜势及气团老化分别估算了VOCs的反应活性和化学消耗.结果表明:①2019年5月杭州湾北岸上海段石化集中区O3的IAQI(空气质量分指数)优良率仅为61.3%,ρ(O3)第90%分位值为173.0 μg/m3.5月22日、23日发生重度O3污染,O3日最大8 h滑动平均值分别为(284.4±19.2)(282.0±14.2)μg/m3,分别超过GB 3095—2012《环境空气质量标准》二级标准限值(160 μg/m3)的77.75%和76.25%.②O3的生成受VOCs控制,降低VOCs的排放可在一定程度上降低O3的生成,降低NOx的排放反而会促进O3的生成.③O3重度污染期间,VOCs主要来自化工区排放(72.35%)和机动车尾气排放(27.65%).④O3重度污染期间,烯烃、炔烃及芳香烃对O3生成的贡献率之和在80.00%以上,其中丙烯、乙烯和甲苯的贡献率分别为29.97%、15.60%和14.16%;芳香烃及烯烃和炔烃是最主要的VOCs化学消耗物种,其中φ(丙烯)、φ(乙烯)和φ(1,2,4-三甲苯)的消耗量分别为13.57×10-9、4.93×10-9和3.55×10-9.研究显示,杭州湾北岸上海段5月O3的生成受化工区影响显著,丙烯与乙烯是O3重污染期间关键的O3前体物.   相似文献   
8.
Recently, the New Morris Method has been presented as an effective sensitivity analysis tool for mathematical models. The New Morris Method estimates the sensitivity of an output parameter to a given set of input parameters (first-order effects) and the extent these parameters interact with each other (second-order effects). This method requires the specification of two parameters (runs and resolution) that control the sampling of the output parameter to determine its sensitivity to various inputs. The criteria for these parameters have been set on the analysis of a well-behaved analytical function (see Cropp and Braddock, Reliab. Eng. Syst. Saf. 78:77–83, 2002), which may not be applicable to other physical models that describe complex processes. This paper will investigate the appropriateness of the criteria from (Cropp and Braddock, 2002) and hence the effectiveness of the New Morris Method to determine the sensitivity behaviour of two hydrologic models: the Soil Erosion and Deposition System and Griffith University Representation of Urban Hydrology. In the first case, this paper will separately analyse the sensitivity of an output parameter on a set of input parameters (first- and second-order effects) for each model and discuss the physical meaning of these sensitivities. This will be followed by an investigation into the sampling criteria by exploring the convergence of the sensitivity behaviour for each model as the sampling of the parameter space is increased. By comparing these trends to the convergence behaviour from Cropp and Braddock (2002), we will determine how well the New Morris Method estimates the sensitivity for each model and whether the sampling criteria are appropriate for these models. It will be shown that the New Morris Method can provide additional insight into the functioning of these models, and that, under a different metric, the sensitivity behaviour of these models does converge confirming the sampling criteria set by Cropp and Braddock.  相似文献   
9.
The Chillán River in Central Chile plays a fundamental role in local society, as a source of irrigation and drinking water, and as a sink for urban wastewater. In order to characterize the spatial and temporal variability of surface water quality in the watershed, a Water Quality Index (WQI) was calculated from nine physicochemical parameters, periodically measured at 18 sampling sites (January–November 2000). The results indicated a good water quality in the upper and middle parts of the watershed. Downstream of the City of Chillán, water quality conditions were critical during the dry season, mainly due to the effects of the urban wastewater discharge. On the basis of the results from a Principal Component Analysis (PCA), modifications were introduced into the original WQI to reduce the costs associated with its implementation. WQIDIR2 and WQIDIR, which are both based on a laboratory analysis (Chemical Oxygen Demand) and three (pH, temperature and conductivity), respectively, four field measurements (pH, temperature, conductivity and Dissolved Oxygen), adequately reproduce the most important spatial and temporal variations observed with the original index. They are proposed as useful tools for monitoring global water quality trends in this and other, similar agricultural watersheds in the Chilean Central Valley. Possibilities and limitations for the application of the used methodology to watersheds in other parts of the world are discussed.  相似文献   
10.
Ground-water flow and solute-transport simulation modeling are major components of most exposure and risk assessments of contaminated aquifers. Model simulations provide information on the spatial and temporal distributions of contaminants in subsurface media but are difficult to apply to karst aquifers in which conduit flow is important. Ground-water flow and solute transport in karst conduits typically display rapid-flow velocities, turbulent-flow regimes, concentrated pollutant-mass discharge, and exhibit open-channel or closed-conduit flow. Conventional ground-water models, dependent on the applicability of Darcy`s law, are inappropriate when applied to karst aquifers because of the (1) nonapplicability of Darcian-flow parameters, (2) typically nonlaminar flow regime, and (3) inability to locate the karst conduits through which most flow and contaminant transport occurs. Surface-water flow and solute-transport models conditioned on a set of parameters determined empirically from quantitative ground-water tracing studies may be effectively used to render fate-and-transport values of contaminants in karst conduits. Hydraulic-flow and geometric parameters developed in a companion paper were used in the surface-water model, TOXI5, to simulate hypothetical slug and continuous-source releases of ethylbenzene in a karst conduit. TOXI5 simulation results showed considerable improvement for predicted ethylbenzene-transport rates and concentrations over qualitative tracing and analytical ground-water model results. Ethylbenzene concentrations predicted by TOXI5 simulations were evaluated in exposure and risk assessment models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号